

ELIZADE UNIVERSITY, ILARA MOKIN, NIGERIA

Mechanical Engineering Department First Semester (2016/2017) Examination

Course Code:

ATE 403

Course Title:

Finite Element Analysis of Structures

Time Allowed:

3 Hours

Instruction:

Answer any four questions

1 a. Explain the concept of FEA and highlight five benefits of using it

b. Define node and describe with diagrams any three types of node

e. A real world model is shown in Figure 1. Sketch a possible idealized physical model to use for FEA from the real world model given

d. Solve the following system of equations by using the Gauss-Jordan elimination method.

$$\begin{cases} x+y+z=5\\ 2x+3y+5z=8\\ 4x+5z=2 \end{cases}$$

Figure 1: The "Real World" Object

2. Explain what you understand by h- and p-elements and state three differences between the two concepts.

b. State the reason why a bar element is preferred to a spring element in Finite Element Analysis and give any three assumptions inherent in the usage of a bar element.

c. Determine the eigenvalues and eigenvectors for the following matrix of equation

$$\begin{bmatrix} 8 & 4 \\ 2 & 16 \end{bmatrix}$$

3. Figure 2 depicts a tapered elastic bar subjected to an applied tensile load P at one end and attached to a fixed support at the other end. The cross-sectional area varies linearly from A_1 at the fixed support at x = 0 to $3A_1/4$ at x = L. Calculate the displacement of the end of the bar

(a) by modeling the bar as a single element having cross-sectional area equal to the area of the actual bar at its midpoint along the length,

- (b) using two bar elements of equal length and similarly evaluating the area at the midpoint of each, and
- (c) using integration to obtain the exact solution.

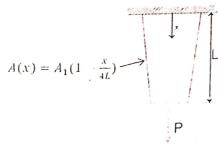


Figure :: Tapered axial bar

- 4a. State Castigliano's First Theorem
- b. (i) Apply Castigliano's first theorem to the system of four spring elements depicted in Figure 3 to obtain the system stiffness matrix. The vertical members at nodes 2 and 3 are to be considered rigid.
- (ii) Solve for the displacements and the reaction force at node 1 of Figure 3 if

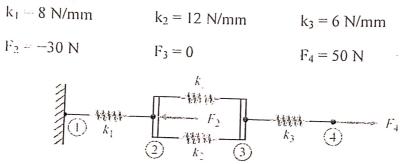


Figure 3: Four Spring Elements

- 5a. State the Principle of Minimum Potential Energy
- b. (i) Apply the Principle of Minimum Potential Energy to the system of four spring elements depicted in Figure 3 to obtain the system stiffness matrix. The vertical members at nodes 2 and 3 are to be considered rigid.
- (ii) Solve for the displacements and the reaction force at node 1 of Figure 3 if

$$k_1 - 2 \text{ N/mm}$$
 $k_2 = 3 \text{ N/mm}$ $k_3 = 1.5 \text{ N/mm}$ $F_2 = -30 \text{ N}$ $F_3 = 0$ $F_4 = 50 \text{ N}$

- 6. a. What is the significance of flexure elements in FEA?
 - b. State three assumptions and restrictions underlying the development of flexure elements?
- c. The nodal variables associated with a flexure element are as depicted in Figure 4 with the displacement function v(x) to be discretized expressed as $v(x) = f(v_1, v_2, \theta_1, \theta_2, x)$

subject to the boundary conditions

Show that
$$v(x) = |N_1 - N_2| = v - \frac{dv}{dx}\Big|_{x=x_1} = \theta_1 - \frac{dv}{dx}\Big|_{x=x_2} = \theta_2$$

where N_1 , N_2 , N_3 , and N_4 are the interpolation functions that describe the distribution of displacement in terms of nodal values in the nodal displacement vector $\{\delta\}$

Figure 4: Beam element nodal displacements shown in a positive sense.